The Washington Dept. of Revenue
Data Mining Pilot Project:
A Retrospective Overview

2000 FTA Revenue Estimating and
Tax Research Conference
September 26, 2000

Stan Woodwell
Research Information Manager
Washington Dept. of Revenue
Data Warehousing/
Data Mining Study Team

- Three Integrated Efforts
 - building small data warehouse -- "Data Mart"
 - testing query & analysis tools
 - doing data mining pilot project
Data warehousing

A data warehouse is a copy of transaction data specifically structured for querying, analysis and reporting.

That is,
- on physically separate hardware
- organized differently, especially for querying, analysis & reporting
Data Mart/Query Software

• **Data Mart**
 - SQL Server - 50 Gig
 - NT Operating System
 - ODBC

• **Query Software -- COGNOS**
Data Mining Continuum

Query Statistical Procedures Decision Trees Neural Networks
Data Mining
What’s New, What’s Not

- Neural Networks
- Decision Trees (Rule Induction)
 - represent
- “Artificial Intelligence”
- Data trains software

- Query Logic
- Statistical Procedures
 - Regression
 - Cluster Analysis
 - Association Rules (Affinity/Market Basket Analysis)
Driving What’s New...

- Incredible Increases in Computer Speed and Memory
- Software Utilizing Extremely Complex Iterative Processes Can Really Crank
Dogbert the Consultant

“If you mine the data hard enough you can also find messages from God”
EXPECTATIONS

- Top Management
- Conferences
- Vendor Presentations

#1 DOR Priority
Committee Decisions
Data Mining

- Selection of Pilot Project
 “Proof of Concept”
- Selection of Data Mining Software for Pilot Project
Data Mining Software Selection

- NCR
- SAS
- SPSS
- IBM

- SPSS Clementine Miner
 - “In a cavern, in a canyon, excavating for a...”
Criteria for Pilot Project

- Doable
- Measurable
- Produces Efficiency within Program
- Within Budget
- Divisional Resources Available
- Can be completed by End of June
Projects Considered for Pilot

- Enhancing Audit Selection
- More Sophisticated Audit Retail Profiling
- Expanded Active Non-Reporter Profiling
- Tax Discovery - Identifying Non-Filers
- Parallel Taxpayer Education Effort
- Examining Transactions for Fraud
- Controlled Experiment with Collections
Data Mining Pilot Project
Audit Selection

Purpose

• Provide “Proof of Concept” for Advanced Data Mining
• Demonstrate Enhanced Predictive Capabilities through Utilization of Sophisticated Software
• Lead to Development of More Productive Audit Selection Criteria
Data Mining Pilot Project
Audit Selection

• “Quasi-Experimental”
• Utilizes ODBC from Data Mart
• Dependent Variable Audit Recovery
• Build “Supervised” Model Using Known Results from Audits Issued in 1997
• Use Model to Predict Recovery for 1998 Audits
• Compare Predictions with Actual 1998 Results
Data Mining Pilot Project
Audit Selection

Process

• Divided Audit Recovery into 4 Bands
 – $1 - 1,000
 – $1,000 - 5,000
 – $5,000 - 10,000
 – Over $10,000

• Divided 1997 Audit Sample into 2 Samples -- "Test" Sample and "Training Sample"

• Built Models using Training sample, applied to Test sample to test generalizability

• Applied Best Models to Predict Recovery for 1998 Audits
SPSS Clementine Rule Set Example
Rule Induction modeling

Rules for 2:
 Rule #1 for 2:
 if Tax_Due_Amount_1 <= 38618.2
 and Taxable_Amount_2 > 521297.0
 and Gross_Amount_3 <= 1683394
 and Tax_Due_Amount_3 > 4506.39
 and Total_Wages_Amount_3 <= 392286
 and Average_Employee_Count_4 > 3
 and taxlag1 > -3950.45
 and dedlag1 > 3694.86
 and dedlag3 > -17693.7
 and emplag2 > -5
 and emplag2 <= 1
 then -> 2

 Rule #2 for 2:
 if Line_Code_Num_6 == T
 and Taxable_Amount_3 > 457921.0
 and Taxable_Amount_3 <= 9191570
 and Total_Wages_Amount_1 <= 489394
 then -> 2

 Rule #3 for 2:
Data Used for Modeling

- Gross income, taxable income and tax due from the preceding 4 years.
- Total deductions from the preceding 4 years.
- Total wages and average number of employees from the preceding 4 years.
- 26 industry categories derived from SIC codes.
- Location (in-state vs. out-of-state).
- Ownership type.
- Flags set on the presence or absence of line codes and deduction codes.
- Lag variables—changes in variables from year to year.
Data NOT Used for Modeling

Washington Combined Excise Tax Return
• Sales Tax -- 1 line code, 1 rate
• Business and Occupation Tax and
• Public Utility Tax -- 22 line codes, different activities, different rates
• 27 Deduction Codes associated with line codes

Unable to Use
• line code amounts
• deduction type amounts
• deduction type by line amounts
Major Problems

- Data Structures
- Missing/Imperfect Data
- Modeling Overspecification
Data Structures

- **Query Software**
 - “Star Structures”
 - relational database/hub tables
 - myriad tables connected by multiple keys

- **Mining Software**
 - “flat file”
 - single record containing everything for each taxpayer
SPSS Clementine Merge Stream
SPSS Clementine Merge Stream
Overspecification

- Model “too close to data”
- No problem generating rules to “predict” training sample with extreme accuracy
- Model’s predictive rules did not generalize particularly well to test sample
Results--Predicting 1998 Audit Recovery Band

“Results Positive but Modest…”
Conclusions/Lessons Learned

♦ Due to a number of limiting factors, the predictive power of the pilot model was positive but modest.

♦ As a learning experience the pilot was an unquestioned success. A great deal of technical knowledge was acquired within the Department in a very short period of time. Some of the major lessons learned are as follows:
Conclusions/Lessons Learned

♦ Optimal data structures for query software are definitely not optimal for mining software—a “two-tiered” approach to data warehousing will frequently be necessary.

♦ The major part of data mining (possibly 85 to 95%) is data preparation and data cleansing.

♦ Optimal use of mining software requires “perfect” data, structured with fillers for missing records and missing fields.
Conclusions/Lessons Learned

♦ Despite the power of the modeling software, modeling is still a complicated process of structural design, analysis and experimentation.

♦ While training is essential and limited use of outside consultants may be beneficial, the Department does have the technical capacity to do data mining in-house.
Conclusions/Lessons Learned

♦ Data Mining is not a “magic bullet.” It requires a highly focused and structured approach. It is highly technical and resource intensive.

♦ For appropriate applications, sophisticated Data Mining could be an extremely valuable and cost effective strategy for the Department.
Into the Realm of Budget Process.

- $$$
- FTE’s
- Internal Politics
 - Mining vs. Querying
- External Politics (Gov’s Office, Legislature)
 - Government Intrusiveness
 - Politically Correct Terms
- #######